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Abstract— In this paper, two multiple description coding
schemes are developed, based on prediction-induced randomly
offset quantizers and unequal-deadzone-induced near-uniformly
offset quantizers, respectively. In both schemes, each description
encodes one source subset with a small quantization stepsize, and
other subsets are predictively coded with a large quantization
stepsize. In the first method, due to predictive coding, the quan-
tization bins that a coefficient belongs to in different descriptions
are randomly overlapped. The optimal reconstruction is obtained
by finding the intersection of all received bins. In the second
method, joint dequantization is also used, but near-uniform
offsets are created among different low-rate quantizers by quan-
tizing the predictions and by employing unequal deadzones. By
generalizing the recently developed random quantization theory,
the closed-form expression of the expected distortion is obtained
for the first method, and a lower bound is obtained for the second
method. The schemes are then applied to lapped transform-based
multiple description image coding. The closed-form expressions
enable the optimization of the lapped transform. An iterative
algorithm is also developed to facilitate the optimization. Theo-
retical analyzes and image coding results show that both schemes
achieve better performance than other methods in this category.

Index Terms— Multiple description coding, predictive coding,
random quantization, deadzone quantization.
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I. INTRODUCTION

MULTIPLE description coding (MDC) mitigates the
impact of packet losses during transmission by send-

ing M (M ≥ 2) descriptions of the source such that the
reconstruction quality improves with the number of received
descriptions [1].

In [2], a multiple description scalar quantizer (MDSQ)
method is developed, which is asymptotically optimal at high
rates [3]. Many extensions of MDSQ have been proposed, e.g.,
scalable MDSQ [4], [5]. However, the MDSQ requires com-
plicated index assignment. In [6], a two-stage modified MDSQ
(MMDSQ) that is also asymptotically optimal is designed,
where two staggered uniform scalar quantizers are used to
generate the first layer bits of each description, respectively.
When both descriptions are received, another uniform scalar
quantizer is used to further partition the joint bins of the two
staggered quantizers. The output of the second-layer quantizer
is evenly split into the two descriptions. An improvement of
the MMDSQ is reported in [7].

In [8], the MDSQ is extended to more than two channels
via a combinatorial optimization approach. Another extension
of the MDSQ is proposed in [9], which has multiple stages
and each stage refines the preceding stages. However, both the
methods in [8], [9] become quite complicated as M increases.

Lattice vector quantization-based MDC (MDLVQ) methods
are studied in [10], [11], where M descriptions are generated
by uniquely assigning each point in a finer central lattice
to M points in a sublattice. These methods also involve a
complicated index assignment problem.

Source splitting is another approach to generate multiple
descriptions. One of the earliest designs appeared in [12],
where the source samples are split into even-indexed and
odd-indexed subsets, and each subset is encoded into one
description. If one description is lost, the missing data in it
are predicted from their neighbors in the other description,
but the performance in this case approaches an asymptote at
high rates because of the prediction error [1].

In [13], transform coding is used and the transform coeffi-
cients are also split into two subsets. Each subset is quantized
to generate the base layer of one description. Each description
also includes a coarsely quantized version of the other subset,
which is used when the other description is lost. The optimal
bit allocation between the two descriptions is studied.

In [14], a RD-MDC method is developed by generaliz-
ing [13] to JPEG 2000 for two-description coding, where each
JPEG 2000 code-block is coded at two rates, one in each
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description. The rate allocation is determined by Lagrangian
optimization. The RD-MDC is extended in [15] to M channels
(M > 2), where each JPEG 2000 code-block is still encoded at
two rates. The higher-rate coded code-blocks are divided into
M subsets and are assigned to M descriptions. Each descrip-
tion also carries the lower-rate codings of the remaining code-
blocks. In [16], a multi-rate method with M − 1 degrees of
freedom is developed, which generalizes the two-rate method
in [15]. In this method, each subset of the source is coded at
M different rates, one for each description.

The pairwise correlating transform (PCT) [17] introduces
controlled redundancy before splitting the data, and the redun-
dancy is adjusted by a set of 2 × 2 correlating transforms.
If one coefficient is lost, it is estimated from its counterpart
in the other description. However, PCT does not perform well
at high rates due to the prediction residual, similar to [12].
In [18], a generalized PCT (GPCT) is proposed to encode the
prediction residual in each description, but no image coding
result is reported. The PCT can be generalized to introduce
correlation among more than two coefficients [19].

The erasure correcting codes can also be used to general
multiple descriptions by providing unequal loss protections
(ULP) to different layers of a scalable source code [20].
However, the method only has good performance when at least
n descriptions are received, for some pre-specified n.

In [21], a multiple description lapped transform with
prediction compensation (MDLTPC) is developed for two-
description coding, where the source is partitioned into two
subsets, and each subset is encoded as the base layer of
one description. Each description also encodes the prediction
residual of the other subset as the enhancement layer. The
application of the MDLTPC in MD image coding achieves bet-
ter performances than MMDSQ, RD-MDC, PCT, and GPCT.

In [22], another M-channel MDC scheme is proposed
using two-rate predictive coding and staggered quantization
(TRPCSQ), where the M −1 lower-rate quantizations for each
coefficient are designed to be uniformly staggered using two
operations: (1) The M −1 lower-rate quantizers for its predic-
tion residuals in different descriptions are uniformly shifted
to each other. (2) The corresponding predictions in different
descriptions are also quantized by a uniform quantizer with the
same quantization step. The TRPCSQ achieves better perfor-
mance than MDLVQ and RD-MDC. However, the quantization
of the prediction reduces the prediction accuracy, and the
staggered quantizers become asymmetric around 0, which lose
some coding efficiency, especially at low rates. In addition, it is
well known that deadzone quantizer has better rate-distortion
(R-D) performance than uniform quantizer, but TRPCSQ
only uses shifted uniform quantizers to ensure uniform
offsets.

A three-layer MDC (TLMDC) scheme is developed in [23],
which generalizes MDLTPC to M > 2 via sequential predic-
tion. When more than two low-rate reconstructions of a subset
are available, their average is used as the final reconstruction.
A third layer is also added to refine the low-rate-coded
subsets when only one description is lost, which is usually
the dominant error scenario. It is shown that TLMDC can
have better performance than TRPCSQ.

In this paper, we propose two improved MDC schemes
for MDLTPC, TRPCSQ and TLMDC. As in TRPCSQ [22],
both new methods use two-rate predictive coding. Sequential
prediction is also used as in TLMDC [23]. In the first method,
instead of simply averaging the low-rate reconstructions from
different descriptions, an improved reconstruction is obtained
by finding the intersection of all received bins, which have
random offsets due to predictions. This is different from the
uniform offsets in TRPCSQ. Another difference with TRPCSQ
is that deadzone quantizers can be used in this method.
Moreover, different from [21]–[23], the reconstructions of the
high-rate coded subsets are also refined by the refined low-
rate reconstruction. The second method is similar to TRPCSQ
in the sense that it uses near-uniform offsets among different
low-rate quantizers, which also requires the quantization of
the predictions. However, different from TRPCSQ, the near-
uniform offsets are achieved by employing unequal deadzones
in different quantizers, which avoids the asymmetric quantizer
problem in TRPCSQ, and has better R-D performance. We call
the two methods multiple description coding with randomly
offset quantizers (MDROQ) and uniformly offset quantizers
(MDUOQ), respectively.

Although staggered quantizers and unequal deadzone quan-
tizers have been used in various MD schemes, their theoretical
and image coding performances have not been systematically
studied and compared to each other, especially for M > 2. For
example, in [24], staggered quantizers are used to improve
the central decoder of the two-description RD-MDC, but
theoretical analysis is only derived for the special case when
the low-rate quantizer stepsize is an integer multiple of the
high-rate one. In [25], a total variation-based optimization
method is developed to get better MDC decoder, where the
intersection of all received quantization bins is used as an
optimization constraint. In [26], both unequal quantizations
and unequal deadzones are suggested for MD video coding,
but no theoretical analysis is given.

In this paper, by generalizing the random quantization
theory recently developed in [27], we obtain the closed-form
expressions of the theoretical performances of MDROQ for
any M . Our generalization also unifies all the results in [27].
We also obtain a lower bound for the distortion of MDUOQ.
We then apply the two methods to lapped transform-based
MD image coding. The closed-form expressions enable the
optimization of the pre/post-filters in the lapped transform. An
iterative algorithm is developed to facilitate the optimization.
Theoretical analyses and image coding results show that the
proposed schemes achieve better performance than [21]–[23].

II. MULTIPLE DESCRIPTION CODING WITH

PREDICTION-INDUCED RANDOMLY OFFSET QUANTIZERS

In this section, we describe the MDC framework using
prediction-induced randomly offset quantizers (MDROQ), and
derive the closed-form expression of its expected distortion.

A. System Description

In the proposed MDROQ method, to get M descriptions,
the input samples are first partitioned into M subsets, which
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Fig. 1. A three-description coding example of joint de-quantization from
prediction-induced random quantizers.

can be done at sample or block level, depending on the
application. For one-dimensional (1-D) signals, the i -th subset
includes the (nM + i)-th samples or blocks for all possible
n, where i = 0, . . . , M − 1. Two-dimensional (2-D) signals
can be partitioned into M subsets of 2-D blocks using some
2-D patterns, as shown in Fig. 5 in Sec. IV-D. In practices,
block level partition is more useful, together with block
transforms such as Discrete Cosine Transform (DCT). We can
also partition the source at sample level, and apply DPCM
to encode the data. This can be used to study the asymptotic
performance of block coding, since the performance of block
coding approaches that of the DPCM as the increase of the
block size. The general formulas derived in this section are
applicable to both sample-based and block-based methods.
Later on, we will give detailed expressions for these cases.

In the encoder, the i -th description encodes the i -th subset
using a uniform or deadzone scalar quantizer with a quantiza-
tion stepsize q0. All other subsets are sequentially predicted
from the previously encoded subsets in the same description,
and the prediction residuals are encoded by a uniform or
deadzone scalar quantizer with a larger quantization stepsize
q1 > q0. This is simpler, more flexible and has better R-D
performance than the shifted uniform quantizers in TRPCSQ
[22], especially when deadzone quantizers are used.

A more important difference of the proposed scheme from
[21]–[23] is in the decoder. The key is to jointly reconstruct
each sample from all received descriptions, based on the
intersection of all received quantization bins.

A three-description example with uniform quantizers is
shown in Fig. 1. We first look at the case where only low-rate
coded versions of a sample x are available. Let x be quantized
with stepsize q0 in Description 0, and x̄i the prediction of x
in the i -th description from previously reconstructed samples
in the same description, and ei the corresponding prediction
residual for x . In the i -th description, ei is quantized with
stepsize q1, and the reconstructed residual is denoted by êi .
The reconstruction of x in the i -th description is thus:

x̂i = x̄i + êi . (1)

As a result, the quantization of ei induces a quantization
partition for x with the same stepsize q1, but the partition
is shifted from that of ei by x̄i , as shown in Fig. 1.

When multiple predictive codings of x are received, the
bins that x belongs to in these descriptions will have some
random offsets, caused by the different prediction values x̄i

in different descriptions, because they use different references
for prediction. Clearly a refined reconstruction can be obtained
if we find the intersection of all these bins, and then find the
optimal reconstruction of the intersection. For example, at high
rates, the middle point of the intersection can be used.

In Fig. 1, x̂q1 is the refined reconstruction from the two
low-rate quantizers. Since the intersection is smaller than q1,
the refined reconstruction has less error.

Similarly, if both high-rate and low-rate coded versions of
x are received, we can also refine the reconstruction of the
high-rate coding by finding the random intersection of all
received high-rate and low-rate quantization bins, as shown
by the point x̂q0,q1 in Fig. 1. The random offsets among
different quantizers are also caused by the prediction of the
low-rate coding. The benefit of this operation increases with
the redundancy of the scheme, as q1 will be closer to q0. Note
that the refinement of low-rate coding can only be used when
M ≥ 3, whereas the refinement of the high-rate coding can be
used for M ≥ 2. Therefore for two-description coding, only
the latter is applicable.

B. General Formula of the Expected Distortion

We next derive the closed-form expression of the expected
distortion of the MDROQ, which can be written as

D =
M∑

k=0

pk Dk, (2)

where pk = (M
k

)
pM−k(1− p)k is the probability of received k

descriptions, and Dk is the corresponding mean squared error
(MSE). When k = 0, Dk is simply the variance of the input.

Let R0 and R1 (bits/sample) be the average bit rate
of the high-rate-coded and low-rate-coded subsets, respec-
tively. Assume the overall bit rate constraint is R
bits/sample/description, i.e., 1

M (R0 + (M − 1)R1) = R.
In the proposed MDROQ scheme, when k (k > 0) descrip-

tions are available, k out of M subsets will be reconstructed
from both high-rate and low-rate coding, and the rest will
be jointly reconstructed from low-rate coding. We assume
the quantization errors of different blocks are uncorrelated,
and their contributions to the reconstruction error are additive.
Therefore Dk can be written as

Dk = 1

M

(
k D0,k + (M − k)D1,k

)
, (3)

where D0,k is the MSE of subsets with one high-rate and k −1
low-rate codings. D1,k is the MSE of subsets with k low-rate
codings.

1) Expression of D1,k: Finding the expression of D1,k is
generally quite challenging, due to the random length of the
intersection of the k low-rate quantization bins that a signal
belongs to, as shown in Fig. 1. However, when all quantizers
are uniform quantizers and when the bit rate is high (q1 is
very small), a simple closed-form expression can be obtained.
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We start by finding the leftmost bin of these k bins, and
project the lower ends of other k − 1 bins to the leftmost bin.
This gives k − 1 randomly chosen thresholds in the leftmost
bin, which partition the bin into k intervals. The signal is in
the rightmost interval, which is the intersection of all k bins.
Therefore the reconstruction error is D1,k = E[U2]/12, where
U is the length of the rightmost interval.

To find E[U 2], note that this problem is similar to the
random quantization problem recently studied in [27], where a
signal uniformly distributed in [0, q1) is quantized by a k-level
quantizer with k − 1 randomly selected thresholds in [0, q1).
The difference is that in our problem, the signal is always
in the rightmost interval, whereas it can be in any interval
in [27]. However, as pointed out in [27], when the thresholds
are uniformly and independently chosen from [0, q1), all the
intervals have the same distribution. Therefore using order
statistics theory and with the assumption of high rate coding,
the expected distortion is found to be (Eq. (4) in [27])

D1,k = E[U2]
12

= q2
1

2(k + 1)(k + 2)
= q2

1

12
S1,k, (4)

where

S1,k = 6

(k + 1)(k + 2)
. (5)

Clearly, the more quantizers are available, the smaller the
distortion will be.

We next represent D1,k in term of R1, the average rate of
the low-rate coded subsets. Note that although our problem
has the same distortion as the random quantizer in [27], the
rate formula in Eq. (2) of [27] is not applicable here, as it is
the rate of encoding the index of a single scalar quantizer with
random thresholds, whereas R1 in our system is the average
rate of several uniform scalar quantizers.

Let the rate and entropy of each residual subset be R1,i and
h1,i , i = 1, . . . , M −1. Assuming the rate is high and entropy
coding is applied to encode the quantized coefficients, their
relationship with q1 is [28]

R1,i = h1,i − log2q1 = 1

2
log2(2πeσ 2

1,i ) − log2q1 (6)

where we assume all the data are Gaussian, and σ 2
1,i is the

variance of the prediction residual of the i -th subset. When
block coding is used, its expression will be derived in Eq. (32)
in Sec. IV. R1 is the average of all R1,i ’s. That is,

R1 = 1

M − 1

M−1∑

i=1

R1,i . (7)

We can then represent q1 by

q1 = √
2πe

(
M−1∏

i=1

σ1,i

) 1
M−1

2−R1 �
√

2πe σ̄12−R1 , (8)

where σ̄1 is the geometric mean of all σ1,i ’s.
Therefore D1,k in (4) becomes

D1,k = 2πe

12
S1,k σ̄ 2

1 2−2R1 . (9)

2) Expression of D0,k: We next find the expression of D0,k

in (3) when uniform quantizers are used in both low-rate and
high-rate quantizers. In this case, the problem is to find the
MSE of source subsets with one high-rate and k − 1 low-rate
quantizers, and the quantization partitions of the k−1 low-rate
quantizers have random offsets with respect to that of the high-
rate quantizer. Note that when k = 1, the distortion is simply
given by the high-rate quantizer, so we focus on k > 1.

This is more general than the special case of random
quantization studied in Sec. IV of [27], where only two
uniform quantizers with different stepsizes are considered.
However, the proof in Eq. (7)–(8) of [27] can be generalized
to study the more general problem here.

We can focus on finding the MSE of the joint reconstruction
within one high-rate bin, e.g., [0, q0], in which x is uniformly
distributed. Since the random offsets of the low-rate quantizers
are in [0, q1) and q1 > q0, the number of random thresholds
in [0, q0] is between 0 and k − 1. This is different from the
low-rate joint reconstruction in finding D1,k , where there are
always k − 1 thresholds in each bin. Our goal is to find the
size of the refined bin into which the source X falls. Since
all offsets are random, all refined bin lengths are identically
distributed; hence we only need to work with the first refined
bin with left boundary at 0 [27]. We denote its length by V .

Let ai ∈ [0, q1) be the random offset of the i -th low-rate
quantizer with stepsize q1. Since q1 > q0, it is possible that
the range [0, q0] is completely included in a bin of the low-rate
quantizer. Therefore the length V is given by

V =
{

a(1), if a(1) ∈ [0, q0],
q0, if a(1) ∈ (q0, q1),

(10)

where a(1) is the minimum value of all ai ’s, or their first order
statistic, whose pdf is [27]:

fa(1) (v) = 1

qk−1
1

(k − 1)(q1 − v)k−2, 0 ≤ v ≤ q1. (11)

To find the distribution of V , note that the probability that
V = q0 is

∫ q1
q0

fa(1) (v)dv = (1 − q0/q1)
k−1, i.e., all ai ’s are

greater than q0. Define r � q0/q1, the pdf of V is thus

fV (v) = fa(1)(v) + (1 − r)k−1δ(v − q0). (12)

Let U be the size of the intersection into which X falls,
whose pdf is the product of those of X and V [27]. Since X
is uniformly distributed, we have

fU (u) = u fV (u)∫ q0
0 v fV (v)dv

. (13)

It can be shown that
∫ q0

0
v fV (v)dv = q1

(
1 − (1 − r)k−1

)

k
� C1 (14)

and the MSE of the joint reconstruction is

D0,k = E[U2]
12

= 1

12C1

∫ q0

0
u3 fV (u)du

= 1

12C1

(
q3

0 (1 − r)k−1 +
∫ q0

0
u3 fa(1) (u)du

)
= q2

0

12
S0,k,

(15)
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Fig. 2. (a) S0,k in MDROQ with different k and q0/q1. (b) k2S0,k in MDROQ with different k and q0/q1. (c) S1,k of different reconstruction methods.

where

S0,k = 1

1 − (1 − r)k

(
6

r2(k + 1)(k + 2)
− (1 − r)kC2

)
, (16)

C2 = 6

(k + 1)(k + 2)

(
1 − r

r

)2

+ 6

k + 1

(
1 − r

r

)
+ 3.

(17)

It can be verified that S0,1 = 1. Also, when k = 2, D0,k

reduces to
q2

0
12 × q1−3/4q0

q1−1/2q0
, which is Eq. (8) of [27] for the two-

quantizer case. Moreover, when r = 1 (q1 = q0), S0,k reduces
to S1,k in Eq. (5). Therefore this is a more general result that
subsumes all cases in [27].

Fig. 2 (a) plots S0,k for different k and q0/q1, which
shows that S0,k decreases with k, but the decaying rate drops
as q1 grows with respect to q0. To further understand the
impact of k and the ratio r (i.e., q0/q1), we compare with
the joint reconstruction from k uniformly offset quantizers, all
with the same stepsize q0. The corresponding MSE is simply
q2

0/(12k2). Therefore the ratio k2S0,k represents the penalty
factor of using random offsets and larger stepsize q1 in k − 1
quantizers. It is easy to see that k2S0,k approaches 6/r2 as
k → ∞, as shown in Fig. 2 (b). In the special case of r = 1,
k2S0,k → 6, which was observed in [27].

We can rewrite S0,k and D0,k in terms of R0 and R1 using
Eq. (8) and q0 = √

2πeσ02−R0 , where σ 2
0 is the entropy power

of the signal in the high-rate coding. This leads to

D0,k = 2πe

12
S0,kσ

2
0 2−2R0 . (18)

When block coding is used, the expression of σ 2
0 will be

derived in Eq. (29) in Sec. IV.
Plugging D0,k and D1,k into (3) and (2), the general

expression of the expected distortion becomes

D = 2πe

12

(
M∑

k=1

kpk

M
S0,k

)
σ 2

0 2−2R0

+2πe

12

(
M∑

k=1

(M − k)pk

M
S1,k

)
σ̄ 2

1 2−2R1 + p0 D0

� 2πe

12
S̄0σ

2
0 2−2R0 + 2πe

12
S̄1σ̄

2
1 2−2R1 + p0 D0 (19)

where D0 is the variance of the input signal. It should be noted
that the factor S̄0 depends on R0 and R1. This poses some

difficulties for the optimization of the system. An iterative
algorithm will be developed in Sec. IV to resolve this problem.

III. MULTIPLE DESCRIPTION CODING WITH

UNEQUAL-DEADZONE-INDUCED

UNIFORMLY OFFSET QUANTIZERS

In this section, we develop another MDC scheme using
deadzone-based near-uniformly offset quantizers, motivated by
the theoretical advantage of uniformly offset quantizers over
randomly offset quantizers.

A. Comparison of Low-Rate Joint Reconstruction Methods

The proposed scheme improves the TRPCSQ scheme
in [22], where the low-rate quantization bins of the same subset
in different descriptions are obtained by uniformly shifting the
bins of a uniform quantizer. It is shown in [22] that after joint
reconstruction from k (k ≥ 2) descriptions, the distortion of
the low-rate-coded samples is also in the form of (4), but the
distortion reduction factor S1,k also depends on M:

S1,k = 1

(M − 1)2
(M−1

k

)
M−k∑

l=1

(
M − 2 − l

k − 2

)
l3. (20)

Fig. 2 (c) compares the factor S1,k for the low-rate coded
subsets in MDROQ and TRPCSQ, which shows that the uni-
formly offset quantizer in TRPCSQ outperforms the random
quantizer in MDROQ. For the same k, the gap between the
two joint reconstruction methods reduces as the increase of M ,
whereas for the same M , the gap increases with k. Note that
Fig. 2 (c) is only for S1,k , and does not consider the rates of
different quantizers. The overall R-D performance of TRPCSQ
is actually worse than TLMDC and MDROQ.

To gain more insights, we consider the two special cases of
k = 2 and k = M − 1. When k = 2, S1,k in Eq. (5) becomes
1/2, and (20) reduces to M−2

2(M−1) , which approaches to 1/2
as M increases. Therefore the uniformly staggered quantizer
would have similar performance to the random quantizer.
This is because for large M , the offset between neighboring
uniformly staggered quantizers is very small, thus the offset
between any two quantizers is essentially random.

When k = M − 1, S1,k for TRPCSQ in (20) becomes
1/k2. Therefore the combination of the k quantizers reduces
to a uniform quantizer with stepsize of q1/k. In this case,
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as pointed out in [27], the random quantizer is worse than the
uniform quantizer by a factor of 6k2/((k + 1)(k + 2)), which
approaches to 6 for large k.

Fig. 2 (c) also includes the scaling factor S1,k in
TLMDC [23], where the simple average of all lower-rate coded
reconstructions of the subset from the received descriptions
is used as the final reconstruction. Note that the theoretical
derivation in [23] is more general as it allows different
quantization stepsizes for different subset residuals (see Eq. (6)
in [23]), but to reduce the complexity, the experimental results
in [23] are obtained with the same stepsize for all residuals,
as in TRPCSQ and this paper. To get S1,k for TLMDC in
this case, suppose x̂i = x + ni (i = 1, ..., k) are the k low-
rate reconstructions of x , where ni ’s are reconstruction noises.
Their average is x̂ = x + 1

k

∑
i ni . Since the reconstructions

in different descriptions involve different predictions, ni ’s can
be assumed uncorrelated. Therefore the noise variance of the
averaged reconstruction is

q2
1

12
1
k . This is a special case of

Eq. (14) in [23] when the same quantization stepsize q1 is
used for all subset residuals. Compared to (4), we get

S1,k = 1/k, ∀M. (21)

As shown in the figure, except for k = 2, the averaging
method in TLMDC has worse performance than the random
quantization in MDROQ, and the gap increases with k.

The comparison above shows that uniformly offset quan-
tizers are theoretically superior to randomly offset quantizers.
Therefore it is necessary to investigate how to improve the
performance of the MDROQ using uniformly offset quantizers.

B. Description of the MDUOQ Scheme

In TRPCSQ [22], the uniform offsets among different low-
rate coded quantizers are achieved by shifting the bins of
a uniform quantizer by multiple of q1/(M − 1) in different
descriptions. In addition, the prediction x̄i is also quantized
by a uniform quantizer with stepsize q1. Therefore during the
reconstruction, after shifting the shifted quantizers according
to the reconstructed prediction, the quantization bin boundaries
remain the same. Thus the uniform offsets among different
quantizers are always maintained. The problem of TRPCSQ
is that shifting the bins of a uniform quantizer leads to
asymmetric bins with respect to zero, which reduce the coding
efficiency, especially at low rates.

In this paper, instead of shifting the bins of a quantizer
by different amounts, we generate the initial uniformly offset
quantizers by adopting quantizers of unequal deadzone sizes.
We denote the proposed method MDUOQ.

In the i -th description, the i -th subset is still encoded by
a quantizer of stepsize q0. Any other subset j 	= i is first
sequentially predicted from previously reconstructed subsets
in the same description. The prediction is then quantized
by a uniform quantizer with stepsize q1, as in TRPCSQ.
After that, the reconstructed prediction is subtracted from
subset j to obtain the prediction residual, and the residual
is finally quantized by a deadzone quantizer with deadzone
size of 2(δ + l

M−1 )q1, where 2δq1 is the smallest deadzone
size, l = mod( j − i − 1, M), mod(a, b) = a − b
a/b�,

Fig. 3. Examples of uniformly offset quantizers with unequal deadzone and
δ = 0.6 and M = 3. Quantizers (c) and (d) are shifted from (a) and (b).

and the floor operator rounds towards −∞. As a result, across
all the M descriptions, each subset is predictively coded by
M − 1 low-rate quantizers with deadzones of 2(δ + n

M−1 )q1,
n = 0, . . . , M−2, respectively; hence there is a uniform offset
of q1/(M − 1) among these quantizers.

An important difference between MDUOQ and TRPCSQ
is that the uniform offsets among low-rate quantizers are not
always preserved in the MDUOQ, due to predictive coding and
deadzone quantizers, i.e., some quantization bin boundaries
will be changed after adding the reconstructed prediction.

An example is given in Fig. 3 for M = 3 and δ = 0.6,
where quantizers (a) and (b) are the original quantizers with
unequal-deadzone-induced uniform offsets. The partitions in
(c) and (d) are obtained from (a) and (b) by shifting to 3q1 and
−2q1 respectively, due to the quantized prediction. As shown
in the figure, the partitions in (c) and (d) have three and two
different bin boundaries from (a) and (b) respectively, leading
to some nonuniformly offset bins.

In general, if the partition of a quantizer with deadzone
2δ q1 (δ < 1) is shifted to the right by the prediction
nq1 (n > 0), it can be seen from Fig. 3 that only the n
quantization bin boundaries within [(1 − δ)q1, (n − δ)q1] can
have different values from those of the original quantizer,
but all other bin boundaries remain the same. Similarly, if
the prediction is −nq1 (n > 0), only the n boundaries in
[−(n − δ)q1,−(1 − δ)q1] can be affected.

A special case can be noticed from Fig. 3. When
M = 3, if we choose δ = i/2 for any nonzero integer i ,
the bin boundaries of both quantizers will not change after
the shift. Unfortunately for M > 3, no δ can maintain the
boundaries of all quantizers after the shift. The reason is that
in order for all shifted quantization partitions to yield the same
bin boundaries as the original quantizers, the deadzone size
2(δ + l

M−1 )q1 should be multiple of q1 for all possible l. This
is true only when M = 3 and δ = i/2.

The problem of using unequal deadzones to achieve uniform
offsets is somewhat related to the requantization problem
studied in [29] for application in H.264 SP-frames, where the
data are first quantized by a finer quantizer. The reconstruction
is then quantized by a coarser quantizer. It is shown in [29]
that the requantization error can be minimized if we choose
the quantization stepsizes and deadzones of the two quantizers
such that the boundaries of the second quantizer perfectly align
with that of the first one.
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Fig. 4. Encoder and decoder of one description of block-based MDROQ for a 1-D signal with M = 2.

Our problem is different from [29] since we need uniform
offsets. It is more challenging as we have M − 1 quantizers,
and our partitions are not static, i.e., each quantizer’s partition
can be dynamically shifted by prediction.

Finding the exact closed-form expression of D1,k in
MDUOQ is more difficult than in MDROQ, because different
quantizers have different deadzones, and each can be shifted by
its own prediction. Therefore the joint reconstruction behaviors
in different quantization bins could be different, and the
simplification in the proof of the MDROQ cannot be applied
here. The problem is further complicated by the lack of closed-
form R-D formula for deadzone quantizers.

Nevertheless, since many bin boundaries still have uniform
offsets, the offsets among the low-rate quantizers in MDUOQ
still share some similarity with the uniform offset in TRPCSQ.
Therefore, the low-rate joint reconstruction MSE of MDUOQ
can be lower-bounded by that of TRPCSQ, i.e., the D1,k

of MDUOQ can be lower-bounded by (4), with S1,k in (5)
replaced by that of TRPCSQ in (20). After this, all the
derivations in Sec. II-B can be reused to derive a lower bound
for the expected distortion Dk of MDUOQ.

Note that for M = 2, there is only one low-rate quantizer,
thus the quantization of the prediction is not necessary, and
MDUOQ would reduce to MDROQ.

IV. OPTIMIZATION FOR BLOCK-BASED MD CODING

The block transform we use is the time-domain lapped
transform (TDLT) [30], [31], which employs a prefilter at
block boundaries before the DCT and a postfilter after the
inverse DCT, thereby providing improved coding efficiency
and reduced blocking artifact. The TDLT has been adopted by
the JPEG XR standard [32], which is a low-cost alternative to
JPEG 2000 with competitive performance.

An attractive feature of TDLT is that its pre/postfilters
can be optimized for different applications. In MDC, they
can be designed to control the redundancy. In this section,
we formulate the optimization of the pre/postfilters and the
corresponding prediction filters for MDROQ/MDUOQ by first
deriving the expressions of σ 2

0 and σ̄ 2
1 in (19), and then

developing an iterative algorithm to find the optimized filters.
To apply the block-based MDROQ/MDUOQ to MD image

coding, the TDLT and the corresponding prediction filters are

applied to each two-dimensional (2-D) block of an image in
a separable way, i.e., row by row and column by column, as
will be discussed in Sec. IV-D. The separable TDLT-based
framework has achieved the state-of-the-art MD image coding
performance [21]–[23].

A. Block Diagram and DCT-Domain Wiener Filter

Fig. 4 illustrates the block diagrams of the encoder and
decoder of one description in the TDLT-based MDROQ for
an 1-D signal. The block size is L, where each line represents
half block, i.e., L/2 samples. For simplicity, only the codec for
M = 2 is shown, and the joint-dequantization with more than
one description is not shown. The framework of MDUOQ is
similar to Fig. 4, except for the quantization of the prediction
and the use of low-rate quantizers with different deadzones.

We first introduce some notations of the TDLT.
An L × L prefilter P is applied at the boundary of two
blocks. The L-point DCT C is then applied to each block.
As a result, the basis functions of the TDLT cover two
blocks, and the bases of neighboring blocks are overlapped
by one block. At the decoder, the inverse DCT and the
postfilter T at block boundaries are applied. P and T have
the following structures to yield linear-phase filters [30]:
P = W diag{I, V} W, T = P−1 = W diag{I, V−1} W, where
diag{A, B} denotes a block diagonal matrix with matrices A
and B on the diagonal, and zeros elsewhere, I is the L

2 × L
2

identity matrix, V is an L
2 × L

2 invertible matrix that can
be optimized for different purposes, and W is the butterfly
matrix defined by

W = 1√
2

[
I J
J −I

]
, (22)

where J is the L
2 × L

2 counter-identity matrix.

Let P = [
PT

0 PT
1

]T
where P0 and P1 contain the first

and the last L/2 rows of P, respectively, and the superscript
T denotes matrix transpose. Define P12 = diag{P1, P0}.
The L × 2L forward transform can be written as

F = CP12. (23)

Similarly, to obtain the inverse transform, let T = [
T0 T1

]
,

where T0 and T1 are the first and the last L/2 columns of T,
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respectively. Define T21 = diag{T1, T0}. The 2L × L inverse
transform is thus

G = T21CT . (24)

As in [21], [23], since a block transform is used, to get the
subsets required by the proposed MDC schemes, we partition
the input at block level, after applying the TDLT. In each
description, one subset of the output blocks is encoded at a
high rate, and all other subsets are sequentially predicted from
the nearest neighbors from both sides using Wiener filter. For
example, in Fig. 4, y(n) is a low-rated coded block, which will
be predicted by the reconstructed y(n−1) and y(n+1). When
there are more than two descriptions, multiple Wiener filters
could be required. For example, for M = 3, two filters will
be needed. One of them uses the reconstructed y(n − 1) and
y(n + 2) to predict y(n), and another uses the reconstructed
y(n) and y(n + 2) to predict y(n + 1).

In [21], [23], [33], the prediction and the calculation of the
prediction residual were obtained in the spatial domain before
the DCT, where it was shown that it is necessary to normalize
the Wiener filter matrix such that each row has a unit sum.
This will produce a constant output when the input is constant.

In this paper, to facilitate the joint dequantization of random
quantizers, the Wiener filtering and the calculation of the
residual should be performed after the DCT and before the
quantization, as shown in Fig. 4. However, we still need to
impose the normalization constraint discussed above. This
can be done by transforming the DCT-domain prediction
back to the spatial domain, applying the normalization, and
transforming back to the DCT domain.

The relationship between the spatial-domain and DCT-
domain Wiener filters can also be understood from Fig. 4. If
we reuse the spatial-domain Wiener filter H, we can apply
inverse DCT to the reconstructed ŷ(n − 1) and ŷ(n + 1),
then apply the normalized spatial-domain Wiener filter H to
them, and finally apply the DCT transform to the prediction
to convert it into the DCT domain. The concatenation of these
steps is the DCT-domain Wiener filter Hc, which is related to
the spatial-domain Wiener filter by

Hc = CHdiag{CT , CT }. (25)

Once the optimal filter Hc is found, it can be implemented
directly in the DCT domain, which is faster than going through
the inverse DCT, H, and DCT as in (25).

The DCT-domain Wiener filter described here is more
general than the transform-domain prediction in [22], where
only the DC coefficient is predicted. The prediction of other
coefficients does not have good performance in [22], because
the prediction is also quantized to ensure uniformly staggered
quantizers. In the current method, the prediction not only
improves the coding efficiency, but also enables the random
quantizer-based joint reconstruction.

It should be noted that when more than one description is
received, the simple inverse quantizers shown in Fig. 4 should
be replaced by the joint reconstruction methods in MDROQ
and MDUOQ to get refined results.

B. Expressions Required by the Expected Distortion

To find the expression of σ 2
0 in (19) in the TDLT framework,

let y(k) be a high-rate coded DCT block with quantization
stepsize q0. Let qy(k) be the quantization error for y(k). After
the inverse TDLT, the reconstruction error becomes Gqy(k),
where G is the inverse TDLT in (24). As usual, we assume
the quantization noises of different subbands are uncorrelated,
so the average reconstruction error per sample is

1

L

L−1∑

j=0

||g j ||2σ 2
qy( j ), (26)

where σ 2
qy( j ) is the variance of the quantization noise of the

j -th entry of y(k), and g j is the j -th column of G. At high
rates, σ 2

qy( j ) can be written as

σ 2
qy( j ) = 2πe

12
σ 2

y( j ) 2−2R0, j , (27)

where R0, j is the bits allocated to the j -th entry of the block,
and σ 2

y( j ) is the variance of the j -th entry of y(k), which is
the j -th diagonal element of the autocorrelation matrix Ryy.
The latter can be obtained from the TDLT-transformed input,

Ryy = FRx2x2FT , (28)

where F is the forward lapped transform in (23), and Rx2x2 is
the autocorrelation function of two input blocks. In this paper,
we assume the input is a first order Gaussian-Markov source
with unit variance and correlation coefficient ρ = 0.95, so the
(i, j)-th entry of Rx2x2 is ρ|i− j |.

Minimizing the distortion in (26) subject to the bit rate
constraint of 1

L

∑L−1
j=0 R0, j = R0, the minimal value for (26)

can be found to be

2πe

12

⎛

⎝
L−1∏

j=0

||g j ||2σ 2
y( j )

⎞

⎠

1
L

2−2R0 � 2πe

12
σ 2

0 2−2R0 . (29)

The σ 2
0 obtained above can be used in (19) to find the

expected distortion.
Next, we derive σ 2

1,i in (8) for i = 1, . . . , M −1. For a low-
rate coded DCT blocks with average rate of R1,i , its average
reconstruction error after the inverse transform is

1

L

L−1∑

j=0

||g j ||2σ 2
qe(i, j ), (30)

where σ 2
qe(i, j ) is the quantization noise variance of the j -th

entry of the block with average rate of R1,i :

σ 2
qe(i, j ) = 2πe

12
σ 2

ei ( j ) 2−2R1,i, j , (31)

where σ 2
ei ( j ) is the variance of the j -th residual in the block

with average rate of R1,i . R1,i, j is the bits allocated to the
j -th coefficient of the block.

Minimizing (30) with the constraint of 1
L

∑L−1
j=0 R1,i, j =

R1,i , the minimal distortion is found to be

2πe

12

⎛

⎝
L−1∏

j=0

||g j ||2σ 2
ei ( j )

⎞

⎠

1
L

2−2R1,i � 2πe

12
σ 2

1,i 2
−2R1,i . (32)
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Plugging this into (8) and (19) yields the expression of the
expected distortion in the TDLT framework.

C. An Iterative Optimization Algorithm

Our objective is to find the optimal TDLT prefilter that
minimizes the distortion D in (19), subject to the bit rate
constraint of R0 + (M − 1)R1 = M R. In this case, for
a given set of pre/post-filters, we need to find the optimal
bit allocation and the corresponding minimal distortion. The
optimal pre/post-filter can then be found by minimizing the
distortion.

For simple optimization problems such as those in
[21]–[23], a closed-form solution can be found by the
Lagrangian multiplier method. However, in this paper it is
difficult to apply this method, because S0,k in (15) also
depends on R0 and R1.

A naive way to solve the problem is to define a Lagrangian
cost function L = D +λ(R0 + (M −1)R1 − M R), and using a
numerical optimization program to minimize L. However, the
solution is very sensitive to λ.

In this paper, we propose an effective iterative approach to
solve the problem. We first let all S0,k = 1, i.e., ignoring the
refinement of the high-rate quantizers. In this case, since S0,k

is no longer a function of R0 and R1, the distortion in (19)
can be easily minimized by the Lagrangian multiplier method,
and the optimal bit allocation is given by

R0 = min

(
M R, R + M − 1

2M
log2

(M − 1)S̄0σ
2
0

S̄1σ̄
2
1

)
,

R1 = max

(
0, R − 1

2M
log2

(M − 1)S̄0σ
2
0

S̄1σ̄
2
1

)
. (33)

We then use the R0 and R1 above to calculate the S0,k

in (15), which can then be used to update the bit alloca-
tion in (33). Each time the bit allocation is updated, the
distortion in (19) is re-calculated, and the iteration terminates
when the distortion change is less than a threshold.

This iteration method does not need to select λ. The bit rate
constraint is strictly met by (33). In addition, when applied to
the lapped transform-based setup, the optimized pre/post-filters
are not sensitive to the bit rate R and error probability p.
When the block size is 8, the iteration above can always
converge in less than five times with an accuracy of 10−6

in the expected distortion.
Numerical optimization results show that as long as the

clipping operators in the bit allocation (33) are not in effect,
a stable optimal TDLT prefilter can be obtained independent
of R and p. Since practical image coding usually operates at
low rates, experimental results show that slightly better MD
image coding results can be obtained by designing the TDLT
using a total rate of M R = 1 ∼ 1.5 bpp and p = 0.1 ∼ 0.16.
The corresponding coding gain of TDLT is about 9.53 dB. In
this case, the clippings in (33) are active, which essentially
increase the weighting parameter of the low-rate term in the
expected distortion in (19).

Fig. 5. Block subset definitions in MD image coding. (a) M = 2; (b) M = 3;
(c) M = 4; (d) M = 9.

D. Application in MD Image Coding

To apply the block-based MDROQ/MDUOQ to MD image
coding, we partition the image blocks into M subsets in a
periodic pattern. Some examples are shown in Fig. 5. The
patterns are designed to simplify the implementation and
increase the distance of blocks in the same subset, so that when
one subset is lost, there will be more available neighboring
blocks to recover the missing ones. Similar methods have been
used in other MDC schemes such as [34].

In the i -th description, the i -th subset is coded at high
rate, and all other subsets are sequentially predicted and the
residuals are coded at low rate. The TDLT and Wiener filter
are applied to each block in a separable way, i.e., row by row
and column by column, according to Fig. 4.

There are a couple of differences when applying the
1-D optimized TDLT and Wiener filter to 2-D images. First,
in sequential prediction, sometimes a block can be predicted
from both horizontal and vertical neighboring blocks. For
example, in Fig. 5 (b), in the first description, Subset 1 can be
predicted from reconstructed Subset 0 in both directions. After
that, Subset 2 can be predicted from reconstructed Subsets 0
and 1 in both directions. In this case, the average of the two
predictions can be used as the final prediction to improve the
performance, as shown in Eq. (21). This method was also used
in [21], [23]. Second, due to the 2-D partition of block subsets,
in many cases, the horizontal and vertical distances of blocks
within the same subset are closer than those in 1-D signals
with the same M , as shown in Fig. 5 (c-d). Therefore filters
optimized based on the 1-D signal model for a smaller M can
be reused for some larger M . For example, the filters obtained
from 1-D model with M = 2 and M = 3 can be reused for
image coding with M = 4 and M = 9 respectively.

V. THEORETICAL ANALYSES AND

EXPERIMENTAL RESULTS

A. Theoretical and Simulation Results for 1-D Data

We first use 1-D data to compare the theoretical and simu-
lation performances of MDROQ. We consider a unit-variance
first-order Gauss-Markov source with correlation coefficient
of ρ = 0.9. The source is partitioned into subsets at sample
level. Each sample x(n) is predicted by ρ x̂(n − 1), so σ 2

0 =
σ̄ 2

1 = 1 − ρ2 in the theoretical calculation, as in [22]. The
prediction residual is uniformly quantized with step size of
either q0 or q1 according to the MDROQ setup. The results are
reported in Fig. 6 for M = 2, M = 3, and M = 4 respectively,
with R = 5 bits/sample/description, where the entropy of the
quantized results is used as the rate in the simulation. It can
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Fig. 6. Comparison between theoretical analysis and simulation result for 1-D data. (a) M = 2; (b) M = 3; (c) M = 4.

Fig. 7. The side PSNR vs. central PSNR of MDROQ and MDLTPC for M = 2. (a) Lena. Total rate 0.5 bpp. (b) Boat. total rate 1.0 bpp. (c) Baboon. Total
rate 1.0 bpp.

be seen that the theoretical and simulation curves generally
agree quite well. The small discrepancy is because the random
quantization theory assumes that the offsets are uniformly
distributed, which is not exactly the case in MDROQ, as there
are still some correlations in different predictions of the same
sample in different descriptions.

We also replace S1,k in MDROQ by that of TRPCSQ in
Eq. (20). As discussed before, this can be used to derive
a lower bound of the MSE of the MDUOQ scheme. The
simulation result of MDUOQ for M = 4 shows that its Di

is about 2 dB worse than the bound. How to derive a more
accurate distortion expression for MDUOQ is a future research
topic.

B. MD Image Coding Results

In this part, we compare the performances of MDROQ
and MDUOQ with MDLTPC, TRPCSQ, and TLMDC in MD
image coding using testing images of various characteristics.
It has been reported in [21]–[23] that these methods have
better performances than many other methods such as the
PCT/GPCT, MMDSQ, RD-MDC, and MDLVQ.

In MDROQ, deadzone quantizers are used in both high-rate
and low-rate coding, with deadzone size of 1.2q0 or 1.2q1.
In MDUOQ, the minimal deadzone factor is also chosen as
δ = 0.6.

Fig. 7 compares the two-description MDROQ and MDLTPC
in [21]. The trade-off between the side PSNR D1 and the

central PSNR D2 is reported, by varying the bit allocation or
redundancy of the scheme, i.e., adjusting the values of q0 and
q1 while maintaining the same total rate. It can be seen that
for the same side PSNR, the central PSNR of the MDROQ can
be up to 0.5 dB better than the MDLTPC. Alternatively, for
the same central PSNR, the side PSNR of MDROQ achieves
up to 0.3 dB gain over MDLTPC.

Fig. 8 to Fig. 10 compare the relationships between the
side PSNR Di and central PSNR DM of MDROQ, MDUOQ
and TRPCSQ for different images when M = 3, 4, and 9,
respectively. To avoid too crowded figures, only half of Di ’s
are shown in Fig. 10. It can be seen that the proposed MDROQ
and MDUOQ outperform TRPCSQ in almost all cases. Up
to 5 dB gain can be obtained when the redundancy is low
(D1 of MDROQ in Fig. 9 (c)), i.e., when q1 is large, which
corresponds to the right corners of the curves. When there
is moderate or high redundancy, the gain of Di is still up
to 0.5 dB. This is due to various limitations in TRPCSQ,
including the asymmetric quantizers and the use of uniform
quantizer.

Fig. 8 also includes results of the TLMDC in [23], which
is better than TRPCSQ. The TLDMC adds a third layer to
improve the quality when M − 1 descriptions are received.
Although the proposed methods do not have the third layer,
they can still get better overall performance than TLMDC, due
to improved joint dequantization. Note that the third layer can
also be added to our new schemes. Therefore it is fairer to
compare our schemes with TRPCSQ.
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Fig. 8. The side PSNRs vs. central PSNR of various methods for M = 3 and total rate of 1 bpp. (a) Lena. (b) Boat. (c) Goldhill.
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Fig. 9. The side PSNRs vs. central PSNR of various methods for M = 4 and total rate of 1 bpp. (a) Lena. (b) Boat. (c) Pepper.
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Fig. 10. The side PSNRs vs. central PSNR of various methods for M = 9 and total rate of 2 bpp. (a) Lena. (b) Boat. (c) Couple.

Between MDROQ and MDUOQ, when the number of
received descriptions is small, the random quantizer-based
MDROQ achieves better performance than MDUOQ. How-
ever, when more descriptions are available, the uniform offset-
based MDUOQ will generally outperform MDROQ. This
indicates that MDUOQ can have better expected distortion D,
defined in Eq. (2), because the description loss probability p
is usually quite small. In this case, the expected distortion is
dominated by the cases with more descriptions.

To verify this, Fig. 11 reports the expected PSNRs of the
Boat image with various values of bit rates, M and p. In
each curve, the point with the highest expected PSNR has the
optimal bit allocation for the given p. It is clear from the
figure that both MDUOQ and MDROQ have better optimal

expected PSNRs than TRPCSQ and TLMDC, and MDUOQ
is better than MDROQ. It also shows that more redundancy
(lower central PSNR) should be selected when p increases.

It can also be observed from these figures that the overall
difference between MDUOQ and MDROQ reduces when M
increases, which agrees with Fig. 2 (c). However, as mentioned
before, the MDUOQ is not always better than MDROQ in the
Di vs. DM curves, especially when the redundancy is very
small (q1 is large) and when M is large. One reason for this is
that some quantizers in MDUOQ have large deadzones, which
are not optimal at low rates. Another reason is that there are
more prediction-induced nonuniform offsets in the MDUOQ
as M increases, making the uniformly offset quantizers similar
to the randomly offset quantizers. This suggests that the
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Fig. 11. The expected PSNR vs. central PSNR of the Boat image with various methods. (a) Total rate 1bpp, M = 3, p = 0.05. (b) 1bpp, M = 4, p = 0.1.
(c) 2bpp, M = 9, p = 0.15.

predictive coding and unequal deadzone-based MDUOQ still
has not fully achieved the full potential of uniformly staggered
quantizers as promised by the theoretical curves in Fig. 2 (c);
hence it might still be possible to modify the design of
MDUOQ to further improve its image coding performance.
Another open problem is to derive a more accurate formula
than Eq. (20) for the factor S1,k in the current MDUOQ that
takes into account the effect of nonuniform offsets.

VI. CONCLUSION

Two multiple description coding schemes with randomly
and uniformly offset quantizations are proposed, which can
be viewed as unified and improved versions of the methods
in [21]–[23]. The closed-form expressions of the expected
distortions of the proposed schemes are obtained by general-
izing the random quantization theory in [27]. The proposed
schemes are applied to lapped transform-based MD image
coding, and an iterative algorithm is developed to help the
optimization. Theoretical analyses and image coding results
show that the proposed schemes achieve better performance
than other methods in this category.

The proposed schemes can be further improved by adding
the third layer in [23], but this is beyond the scope of the paper.
As discussed before, how to derive the accurate formula of the
distortion of MDUOQ remains as an open problem.
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